铜基粉末冶金摩擦材料的制备及性能研究

机械合金化论文 高速列车闸片论文 粉末冶金论文 铜基复合材料论文 摩擦磨损论文
论文详情
在科学技术高速发展的21世纪,人们对材料的各项性能要求越来越高,而金属基复合材料正是在这种需求中诞生的。金属基复合材料综合了金属基体的金属性和增强体等特性,具有尺寸稳定性高和比强度高等优异性能。它与传统的金属材料相比,具有较高的刚度与比强度;与树脂基复合材料相比,具有优良的耐热性和导电性;而与陶瓷材料相比,又具有高抗冲击性和高韧性。这些的优良性能决定了金属基复合材料从诞生之日起就会在世界范围内得到广泛的研究与发展。近几年来,世界各个国家在高速铁路事业研究上发展迅速,同时也推动了我国铁路事业向高速化方向迈进的脚步。随着高速列车时速的不断提高,对制动材料本身和制动装置的要求也越来越高:一方面,因为高速列车时速的高速化,更新了传统列车基础制动装置及制动系统技术的观念,并提供了引进新材料和新先进制备、生产技术的客观要求;另一方面,也对列车制动技术的闸瓦、制动圆盘/闸片的性能及制备技术要求越来越严格。下面是本论文的重要工作内容。高速列车制动闸片复合材料以机械合金化10h的Cu-Sn合金粉末为基体,以经过10h机械活化的Ti-C粉末作为增磨相,以石墨为润滑相,并添加Fe、Ni、Cr等合金粉末,采用10:1的球料比,球磨时间为1h,球磨转速为200r/min。将上述机械合金化后的混合粉末利用液压式万能机使粉末冷压成型,冷压条件选择以600MPa压制压强和1min保压时间,压制成型后的试样质量为事先计算好的15g。将装有试样的烧结容器放入烧结炉中进行烧结,烧结温度分别为780℃和830℃,到达设定温度后保温时间为1h,后随炉冷却。高速列车制动闸片材料在被烧结的过程中,经过机械活化的Ti-C粉末形成TiC,合成反应放出大量的热,使周围Cu-Sn基体发生化合或熔化,进而形成热影响区。热影响区能改善基体与增强相之间的界面结合,进而提高制动闸片材料的强度。三体磨损是闸片材料的主要磨损机制,同时有磨粒磨损存在,在高载荷的作用下还有剥层磨损发生。随着实验载荷的不断增大,闸片材料的摩擦系数逐渐降低。当实验载荷升高时,添加Ni、Cr的材料摩擦系数和磨损率没有出现明显的拐点,说明Ni、Cr的添加有利于减小实验载荷对于复合材料摩擦磨损行为的影响。制备TiC强化Cu基复合材料所采用的冷压-烧结方法与高速列车制动闸片复合材料的冷压-烧结方法相似。将之前利用行星式球磨机分别机械合金化5h和10h制备好的活化Ti-C粉末与Cu粉按质量比1:9混合,球料比为10:1,球磨机转速为200r/min和500r/min,球磨机混粉时间为1h和2h。在90%Cu粉中添加经过10h的机械活化TiC粉末,采用冷压-烧结后获得组织均匀的TiC强化Cu基复合材料。烧结温度为800℃时,可以看见明显的热影响区,随着烧结温度的升高,Cu基复合材料组织逐渐变得粗大,热影响区也逐渐消失。采用不同的球磨强度对复合材料微观组织的影响比较明显,随着混合时球磨强度的增加,Cu基复合材料中Cu基体的晶粒尺寸有所减小,TiC含量降低,组织逐渐细化。在摩擦磨损过程中,Cu-TiC复合材料的磨损形式主要表现为三体磨损,同时还有少量的磨粒磨损和剥层磨损。铜基复合材料的摩擦系数和磨损率都随着实验载荷的增加呈下降趋势。复合材料中增磨相TiC含量的增加有助于提高材料的耐磨性。
摘要第4-6页
Abstract第6-7页
第1章 绪论第10-26页
    1.1 前言第10-11页
    1.2 高速列车制动闸片材料的发展状况第11-14页
        1.2.1 铸铁摩擦材料第11-12页
        1.2.2 有机合成摩擦材料第12-13页
        1.2.3 粉末冶金摩擦材料第13页
        1.2.4 碳/碳复合材料第13-14页
    1.3 粉末冶金第14-17页
        1.3.1 粉末冶金概述第14-15页
        1.3.2 粉末冶金的特点第15页
        1.3.3 粉末冶金的制备技术第15-16页
        1.3.4 粉末冶金材料的应用第16-17页
    1.4 机械合金化第17-24页
        1.4.1 机械合金化的简介第17-18页
        1.4.2 机械合金化的发展概况第18-19页
        1.4.3 机械合金化的设备第19-20页
        1.4.4 机械合金化的工艺参数第20-21页
        1.4.5 机械合金化的机理第21-22页
        1.4.6 机械合金化在材料制备中的应用第22-24页
    1.5 论文研究内容第24-26页
第2章 实验材料及实验方法第26-34页
    2.1 实验材料第26页
    2.2 实验方法第26-29页
        2.2.1 活化 Ti-C 粉末的制备第26-27页
        2.2.2 Cu-Sn 合金粉末的制备第27页
        2.2.3 冷压-烧结方法制备高速列车制动闸片材料第27-28页
        2.2.4 冷压-烧结方法制备 TiC 强化 Cu 基复合材料第28-29页
    2.3 样品表征第29-34页
        2.3.1 微观金相组织第29页
        2.3.2 XRD 分析第29-30页
        2.3.3 SEM 分析第30页
        2.3.4 密度测试第30页
        2.3.5 硬度测试第30-31页
        2.3.6 摩擦磨损实验第31-34页
第3章 冷压-烧结方法制备高速列车制动闸片材料第34-52页
    3.1 引言第34页
    3.2 制动闸片材料的制备第34-35页
    3.3 制动闸片材料的微观组织形貌第35-42页
    3.4 制动闸片材料的机械性能和摩擦磨损性能第42-50页
    3.5 本章小结第50-52页
第4章 冷压-烧结方法制备 Cu-TiC 复合材料第52-64页
    4.1 引言第52-53页
    4.2 纯铜在不同烧结温度下的显微分析第53-56页
    4.3 铜基复合材料的微观组织形貌第56-61页
    4.4 铜基复合材料的摩擦磨损性能第61-63页
    4.5 本章小结第63-64页
第5章 结论第64-66页
参考文献第66-69页
作者简介第69-70页
致谢第70页
论文购买
论文编号ABS590987,这篇论文共70页
会员购买按0.30元/页下载,共需支付21
不是会员,注册会员
会员更优惠充值送钱
直接购买按0.5元/页下载,共需要支付35
只需这篇论文,无需注册!
直接网上支付,方便快捷!
相关论文

点击收藏 | 在线购卡 | 站内搜索 | 网站地图
版权所有 艾博士论文 Copyright(C) All Rights Reserved
版权申明:本文摘要目录由会员***投稿,艾博士论文编辑,如作者需要删除论文目录请通过QQ告知我们,承诺24小时内删除。
联系方式: QQ:277865656