纳米氧化物半导体电极材料的制备与电化学生物传感应用

静电纺丝论文 金属氧化物论文 三维多孔电极论文 电化学论文 生物传感论文 光电化学论文
论文详情
葡萄糖、过氧化氢的检测与人类身体健康、环境污染以及食品安全等息息相关,为了满足它们实时、快速和现场检测的需求,生物传感器面临着更高、更新的要求:高灵敏度、低检测限、良好的稳定性以及强的抗干扰能力等等。崭新的要求敦促着人们寻求新的电极修饰材料,纳米技术的飞速发展则为电化学生物传感器的新发展提供了无穷的机遇。在众多的纳米材料中,金属氧化物纳米材料由于其优越的电学、光学和光电性质,在电化学生物传感器中有着巨大的潜在应用价值。电化学生物传感器的一个关键组成部分就是具有生物识别能力的修饰电极,而三维多孔电极的多孔网络结构则可以为电化学反应提供适宜的场所。因此,可以预见基于金属氧化物纳米材料的三维多孔电极,将在电化学生物传感器中发挥重要的作用。静电纺丝法是制备三维网络结构的有效手段,而热压处理则可以解决纳米纤维和导电衬底间的附着性问题,结合静电纺丝法和热压处理的优势,我们成功制备了应用于葡萄糖和过氧化氢电化学生物传感的三维多孔电极。光电化学生物传感被认为是具备电化学和荧光传感两者优势的分析方法,它的实现要求电极具备优良的光吸收、快速的电子传输能力和良好的生物相容性。纳米结构阵列电极在光吸收和电子传输方面具有独特的优势,因此,选取具有良好生物相容性的金属氧化物半导体材料构建纳米结构阵列电极,有望实现光电化学生物传感。因此,我们利用水热法制备了一维纳米棒阵列电极,进行了有关葡萄糖光电化学传感的初步尝试。论文的主要研究成果如下:⑴采用静电纺丝法制备了WO3、TiO2、CuO以及NiO/Co3O4等单一或者复合的一维纳米纤维,制备了具有管状结构的ZnO/Co3O4异质结纳米纤维,其直径约为200nm,管壁厚50nm左右;首次采用静电纺丝法制备了具有多级结构的CuO/TiO2复合纳米异质结材料,其具体结构为单晶的CuO纳米片镶嵌于多晶的TiO2纳米管中,讨论了前驱体中无机盐含量在多级结构形成过程中的作用,高分辨电镜测试表明两种半导体有着很好的接触,因此,此方法可以制备出质量较好的pN异质结结构,其在光催化、光电化学领域、气体传感和生物传感领域具有巨大的应用前景;⑵结合静电纺丝和热压处理,制备了基于CuO/TiO2多级结构的三维多孔电极,并将其应用于无酶葡萄糖电化学传感。制备的电极结合了CuO/TiO2的多级结构和复合纤维构筑的开放的三维网络结构,保证了电子的有效转移和底物在薄膜内的有效传输,表现出了高的灵敏度(1321μAmM-1cm-2)、低的检测限(390nM)、快速的响应(响应时间小于5s)、高稳定性以及良好的可重复性;⑶为了进一步探索三维多孔电极结构在电化学生物传感领域的应用价值,我们制备了基于CuO纳米纤维的膜厚可调的三维多孔电极,并将其应用于过氧化氢的无酶电化学传感。电极在不同的溶液体系中表现出不同的电化学过程,在缓冲溶液中表现出扩散控制过程,而在NaOH溶液中则为表面控制过程,它们的传感性能也表现出了各自不同的优势:在缓冲溶液中表现出高灵敏度(407.1μA mM-1cm-2)、快速的响应(响应时间小于5s)、较在氢氧化钠溶液中,具有更宽的线性响应范围(10μM至2mM)以及良好的选择性;而在NaOH溶液中,同样表现出高灵敏度(385.4μAmM-1cm-2)以及快速响应(响应时间小于5s),相对于缓冲溶液而言,具有更低的检测限(399nM)。在此基础上,研究了纳米纤维构建的三维多孔电极与由颗粒构建的三维多孔电极电催化性能的差异,纳米纤维构建的三维多孔电极表现出了更高的灵敏度和更大的线性范围,我们认为这首先是由于纳米纤维的一维结构保证了电子更有效的传输,而且纳米纤维构建的开放的网络结构也使底物在薄膜内部的扩散传输更加的容易;⑷利用水热法在导电玻璃上制备Fe2O3纳米棒阵列电极,研究了其对过氧化氢的电催化性能,讨论了光电效应对电化学响应的影响。在磷酸盐缓冲溶液中,光辐照对氧化电流有明显的增强效应,而对还原电流则几乎没有影响;在NaOH体系中,光辐照对氧化电流和还原电流均有明显的影响,特别地,还原电流在光辐照后,转变为氧化电流,即电极的电流响应方向发生了改变。接下来,我们以Fe2O3纳米棒阵列电极构建葡萄糖光电化学检测,电极对葡萄糖表现出了稳定、快速的光电流响应,而且光电流随着葡萄糖含量的增加而增大,这样,就可以通过光电流的大小标定葡萄糖的含量。
摘要第4-6页
Abstract第6-8页
第一章 绪论第12-24页
    1.1 电化学生物传感器概述第12-16页
        1.1.1 葡萄糖电化学传感器第12-14页
        1.1.2 过氧化氢电化学传感器第14-15页
        1.1.3 光电化学生物传感器第15-16页
    1.2 金属氧化物纳米材料在生物传感器中的应用第16-21页
    1.3 论文的研究内容以及研究意义第21-24页
第二章 静电纺丝法和水热法制备一维纳米材料第24-32页
    2.1 静电纺丝法制备一维纳米材料第24-28页
        2.1.1 电纺过程第24-25页
        2.1.2 电纺参数对静电纺丝的影响第25-26页
        2.1.3 静电纺丝的应用第26-28页
    2.2 一维金属氧化物纳米结构阵列的制备第28-32页
第三章 金属氧化物纳米材料的制备及表征第32-46页
    3.1 前言第32-33页
    3.2 静电纺丝法制备 WO_3、TiO_2以及 CuO 一维纳米纤维第33-35页
    3.3 静电纺丝法制备 ZnO/Co_3O_4、NiO/Co_3O_4一维复合纳米纤维第35-38页
        3.3.1 Co_3O_4/ZnO 复合纳米纤维的制备及其表征第36-37页
        3.3.2 Co_3O_4/NiO 复合纳米纤维的制备及其表征第37-38页
    3.4 静电纺丝法制备具有多级结构的复合纳米纤维第38-42页
        3.4.1 CuO/TiO_2多级结构的制备及其表征第39-41页
        3.4.2 基于 TiO_2的其他多级结构的制备及其表征第41-42页
    3.5 水热法制备一维纳米棒阵列电极第42-44页
        3.5.1 TiO_2纳米棒阵列电极的制备第42-44页
        3.5.2 Fe_2O_3纳米棒阵列电极的制备第44页
    3.6 小结第44-46页
第四章 CuO/TiO_2多级复合纳米结构三维多孔电极的制备及葡萄糖检测第46-54页
    4.1 引言第46页
    4.2 CuO/TiO_2三维多孔电极制备及其表征第46-47页
    4.3 无酶葡萄糖检测第47-53页
    4.4 小结第53-54页
第五章 厚度可调 CuO 三维多孔薄膜电极的制备及其过氧化氢检测第54-70页
    5.1 引言第54-55页
    5.2 CuO 三维多孔电极的制备及其表征第55-56页
    5.3 过氧化氢的检测第56-66页
        5.3.1 缓冲溶液下过氧化氢的电化学响应特性第56-62页
        5.3.2 氢氧化钠溶液下过氧化氢的电化学响应特性第62-66页
    5.4 纳米纤维和颗粒构建的三维多孔电极的过氧化氢传感特性比较第66-68页
    5.5 小结第68-70页
第六章 Fe_2O_3纳米棒阵列在光电化学生物传感的初步应用第70-82页
    6.1 引言第70-71页
    6.2 实验仪器及测试系统第71页
    6.3 Fe_2O_3纳米棒阵列电极的制备与表征第71-74页
    6.4 光电效应对过氧化氢电化学检测的影响第74-77页
    6.5 Fe_2O_3纳米棒阵列电极对葡萄糖的光电化学响应第77-80页
    6.6 小结第80-82页
第七章 总结与展望第82-86页
    7.1 总结第82-84页
    7.2 展望第84-86页
参考文献第86-100页
作者简介及在学期间取得的科研成果第100-102页
致谢第102-101页
论文购买
论文编号ABS551886,这篇论文共101页
会员购买按0.30元/页下载,共需支付30.3
不是会员,注册会员
会员更优惠充值送钱
直接购买按0.5元/页下载,共需要支付50.5
只需这篇论文,无需注册!
直接网上支付,方便快捷!
相关论文

点击收藏 | 在线购卡 | 站内搜索 | 网站地图
版权所有 艾博士论文 Copyright(C) All Rights Reserved
版权申明:本文摘要目录由会员***投稿,艾博士论文编辑,如作者需要删除论文目录请通过QQ告知我们,承诺24小时内删除。
联系方式: QQ:277865656