A~2/O-BAF系统深度脱氮除磷

A~2/O-BAF系统论文 脱氮除磷论文 低C/N比生活污水论文 污泥龄论文 反硝化除磷论文
论文详情
控制与治理水体富营养化是十分棘手、代价昂贵的世界性难题,被称为生态癌症。人类对引起水体富营养化的根本原因已经达成共识,即氮磷等营养元素的过量排放是最关键因素。因此,只有切断污染源,才能根治富营养化,实现经济和社会的可持续发展。A~2/O作为最简单的同步脱氮除磷工艺被广泛应用于国内外大型城市污水处理厂,然而,A~2/O工艺的固有缺欠就是硝化菌、反硝化菌和聚磷菌(PolyphosphateAccumalating Oganisms, PAO)在污泥龄(Sludge Retention Time, SRT)、碳源需求以及回流污泥中携带的硝酸盐影响聚磷菌厌氧释磷等,很难在单一系统中同时获得氮磷的高效去除。A~2/O–BAF系统将活性污泥法和生物膜法结合起来,通过缩短A~2/O的污泥龄,将硝化过程从A~2/O中分离出去,用BAF实现硝化,A~2/O在短污泥龄条件下运行,以除磷和反硝化为目的,而BAF在长污泥龄条件下运行,主要完成硝化。另一方面,从BAF回流来的硝酸盐为A~2/O的缺氧段提供了充足的电子受体,为反硝化除磷创造了条件。同时,由于A~2/O不硝化,回流污泥中不含硝酸盐,为厌氧段提供了绝对的厌氧环境,有利于聚磷菌厌氧释磷。本研究采用连续流双污泥A~2/O–BAF系统处理实际城市生活污水。系统由A~2/O反应器、二沉池和BAF组成。A~2/O为推流式,均分9个格室,有效容积30L;二沉池为竖流式,有效容积20L;BAF为圆柱形,采用上向流,填料层高度H=1.67m,有效容积13L。系统稳定运行后,考察了A~2/O的厌氧、缺氧和好氧段的容积比对脱氮除磷的影响。结果表明,在污泥龄为10d、污泥回流比(Sludge Return Ratio, r)为100%、硝化液回流比(Nitrate Recycling Ratio, R)为300%、总悬浮固体(Total SuspendedSolids, TSS)为3.0g/L时,A~2/O的厌氧、缺氧和好氧段容积比为1:6:2时,既能保证聚磷菌的优势增值又能有效地抑制硝化细菌的繁殖,系统的脱氮除磷效率最佳,总氮(Total Nitrogen, TN)和总磷(Total Phosphorus, TP)的去除率分别达到67.4%和98.6%。微生物的增值对TN去除率的贡献约为30%,反硝化脱氮是生物脱氮的主体。对于前置反硝化系统,从BAF回流来的硝化液为A~2/O的缺氧段提供电子受体,回流比越大,脱氮效果越好。另一方面,在缺氧条件下反硝化聚磷菌(DenitrifyingPhosphorus Removing Organisms, DAPO)与反硝化菌争夺有限的电子供体,如果硝酸盐氮浓度有限,DAPO将被淘洗,反之,DPAO将成为优势菌种,种群结构得到优化。研究结果表明,硝化液回流比与COD、TP和NH+4-N的去除没有明显相关性,TN的去除率随硝化液回流比的增大呈现升高趋势,但升高幅度呈递减规律,缺氧反硝化能力和反硝化吸磷量随硝化液回流比的增大而提高。低温使硝化菌的活性降低,是生物脱氮的瓶颈。BAF中的活性生物填料为硝化菌的生长提供了天然的生存环境,低C/N和较高的溶解氧(Dissolved Oxygen,DO)均有利于硝化菌成为优势菌种。在平均进水温度为14.2℃、COD为369.5mg/L、TN为76.8mg/L的条件下,平均出水TN与TP分别为13.21mg/L和0.23mg/L,满足国家一级A排放标准(GB18918-2002)。硝化液回流为A~2/O的缺氧段提供硝酸盐氮的同时,也携带一定量的溶解氧,兼性异养菌优先利用溶解氧,消耗有机碳源,因此,在较低的C/N比条件下(C/N=3.0),增大硝化液回流比,TN去除率下降。提高C/N比为4.0时,硝化液回流比从100%升高到400%时,TN去除率呈上升趋势,硝化液回流比增大到500%时,TN去除率不升反降,继续增大到600%时,TN去除率恶化。当C/N比为5.5、硝化液回流比从100%升高到600%时,TN去除率呈现上升趋势。C/N比为3.0和4.0时,硝化液回流比对TP去除率影响较小;当C/N比为5.5时,二沉池释磷,出水磷浓度超标,硝化液回流比增大可以缓解“二次释磷”。BAF存在临界进水氨氮浓度。BAF对磷的去除主要基于填料层中的悬浮物质的短期截流及吸附作用。聚磷菌厌氧释磷速率与主体溶液中磷浓度呈零次方关系,与挥发性脂肪酸(Volatile FaticAcid, VAF)的浓度呈正相关;碳源对厌氧释磷速率和好氧/缺氧摄磷速率均有影响。分子氧、硝酸盐氮和亚硝酸盐氮均可作为电子受体,亚硝酸盐氮浓度过高致使聚磷菌“中毒”,破坏细胞壁,导致“磷泄露”。
摘要第5-7页
Abstract第7-9页
第1章 绪论第18-50页
    1.1 课题背景及研究目的和意义第18-21页
        1.1.1 课题来源第18页
        1.1.2 课题背景第18-19页
        1.1.3 课题目的和意义第19-21页
    1.2 污水生物脱氮除磷理论与应用第21-27页
        1.2.1 污水生物脱氮基本原理与应用第21-22页
        1.2.2 污水生物除磷基本原理与应用第22-27页
    1.3 同步硝化反硝化脱氮理论与技术第27-29页
    1.4 短程硝化反硝化脱氮理论与技术第29-30页
    1.5 反硝化除磷理论与技术第30-31页
    1.6 A~2/O 工艺第31-38页
        1.6.1 A~2/O 工艺的技术与发展第31-34页
        1.6.2 A~2/O 工艺脱氮除磷原理与应用第34-35页
        1.6.3 A~2/O 工艺特点及影响因素第35-38页
    1.7 BAF 工艺第38-41页
    1.8 现有城市污水处理脱氮除磷技术存在的问题及分析第41-43页
    1.9 A~2/O-BAF 系统第43页
    1.10 本课题的主要研究内容第43-45页
    1.11 研究方法及试验方案第45-47页
    1.12 课题实施技术路线第47-48页
    1.13 本课题的特色与创新第48-50页
第2章 试验材料与方法第50-56页
    2.1 试验装置及运行程序第50-53页
        2.1.1 A~2/O-BAF 生化系统第50-52页
        2.1.2 SBR 试验装置与方法第52-53页
    2.2 试验用水与水质第53页
    2.3 分析项目及监测方法第53-56页
        2.3.1 常规分析项目及检测方法第53-54页
        2.3.2 仪器监测项目及方法第54-56页
第3章 A~2/O-BAF 系统的启动及工况优化第56-78页
    3.1 A~2/O-BAF 系统的启动第56-63页
        3.1.1 BAF 的挂膜第56-62页
        3.1.2 A~2/O-BAF 生化系统的快速启动第62-63页
    3.2 A~2/O-BAF 系统工况优化第63-75页
        3.2.1 A~2/O 中厌氧段、缺氧段和好氧段的最佳容积比第63-67页
        3.2.2 A~2/O-BAF 系统最佳污泥回流比的确定第67-69页
        3.2.3 A~2/O-BAF 系统中 A~2/O 污泥龄的研究与优化第69-72页
        3.2.4 A~2/O-BAF 系统水力停留时间的确定第72-75页
    3.3 本章小结第75-78页
第4章 硝化液回流比对 A~2/O-BAF 系统脱氮除磷的影响第78-84页
    4.1 试验目的与运行方案第78页
    4.2 试验条件第78页
    4.3 试验水质第78-79页
    4.4 结果与讨论第79-82页
        4.4.1 硝化液回流比对 A~2/O-BAF 系统的性能的影响第79页
        4.4.2 硝化液回流比对 COD 去除率的影响第79-80页
        4.4.3 硝化液回流比对缺氧反硝化能力的影响第80-81页
        4.4.4 硝化液回流比对反硝化吸磷的影响第81-82页
    4.5 本章小结第82-84页
第5章 C/N 比和硝化液回流比对 A~2/O–BAF 系统第84-96页
    5.1 问题的提出与研究目的第84-85页
    5.2 试验方案第85页
    5.3 试验水质第85-86页
    5.4 A~2/O–BAF 系统稳定运行时的性能第86-87页
    5.5 C/N 比和硝化液回流比对 COD 去除的影响第87-88页
    5.6 C/N 比和硝化液回流比对 TN 去除的影响第88-91页
    5.7 C/N 比和硝化液回流比对 TP 去除率的影响第91-92页
    5.8 控制策略第92-93页
    5.9 本章小结第93-96页
第6章 低温低 C/N 比时 A~2/O-BAF 系统脱氮除磷性能第96-104页
    6.1 试验目的与试验方案第96-97页
    6.2 试验水质第97页
    6.3 低温条件下 A~2/O-BAF 系统对 COD 的去除规律第97-98页
    6.4 低温条件下 A~2/O-BAF 系统深度脱氮除磷性能第98-99页
    6.5 低温和污泥沉降性能的关系第99-100页
    6.6 A~2/O 反应器中 pH 值和 ORP 的变化规律第100-102页
    6.7 本章小结第102-104页
第7章 悬浮好氧生物膜 A~2/O 工艺处理城市污水第104-112页
    7.1 试验目的与试验方案第104-105页
    7.2 试验装置与运行程序第105-106页
    7.3 试验用水水质及活性填料第106-107页
    7.4 C/N 比对出水硝态氮及 TN 去除率的影响第107-109页
    7.5 C/N 比对出水磷质量浓度的影响第109-110页
    7.6 低 C/N 比条件下最佳旁流比的确定第110-111页
    7.7 A~2/O 中好氧段生物膜的作用第111页
    7.8 本章小结第111-112页
第8章 高氨氮高 COD 对 A~2/O-BAF 系统中 BAF 硝化性能的影响第112-120页
    8.1 试验目的与试验方案第112页
    8.2 影响 BAF 硝化作用的有关因素第112-116页
    8.3 BAF 中生物除磷现象及 BAF 反冲洗第116-119页
        8.3.1 BAF 中生物除磷现象第116-117页
        8.3.2 BAF 反冲洗第117-119页
    8.4 本章小结第119-120页
第9章 A~2/O-BAF 系统中活性污泥微生物特性研究第120-140页
    9.1 研究目的第120页
    9.2 反硝化聚磷菌占聚磷菌的比值第120-123页
    9.3 A~2/O-BAF 系统活性污泥除磷动力学第123-127页
        9.3.1 A~2/O-BAF 系统活性污泥微生物细胞内物质变化第123-124页
        9.3.2 A~2/O-BAF 系统除磷动力学第124-127页
    9.4 碳源类型对 A~2/O 活性污泥反硝化除磷的影响第127-130页
    9.5 不同电子受体对 A~2/O 活性污泥反硝化除磷的影响第130-134页
    9.6 pH 值对 A~2/O 活性污泥反硝化除磷的影响第134-137页
    9.7 本章小结第137-140页
结论第140-142页
参考文献第142-154页
攻读博士学位期间所发表的学术论文第154-156页
致谢第156页
论文购买
论文编号ABS566878,这篇论文共156页
会员购买按0.30元/页下载,共需支付46.8
不是会员,注册会员
会员更优惠充值送钱
直接购买按0.5元/页下载,共需要支付78
只需这篇论文,无需注册!
直接网上支付,方便快捷!
相关论文

点击收藏 | 在线购卡 | 站内搜索 | 网站地图
版权所有 艾博士论文 Copyright(C) All Rights Reserved
版权申明:本文摘要目录由会员***投稿,艾博士论文编辑,如作者需要删除论文目录请通过QQ告知我们,承诺24小时内删除。
联系方式: QQ:277865656