超高分子量聚乙烯的表面改性及其耐磨性能研究

人工关节论文 超高分子量聚乙烯论文 低温等离子体处理论文 类金刚石薄膜论文 耐磨性论文
论文详情
人工关节置换是治疗严重骨关节疾病最终最有效的方法。目前由UHMWPE制成的人工关节臼配合金属或陶瓷制成的关节头已成为临床最普遍使用的人工关节摩擦副。然而在人工关节的长期活动中,UHMWPE人工关节臼,会因磨损产生磨屑,而磨屑会刺激人体内的生物反应,引起组织发炎,发生无菌松动,并最终导致人工关节的远期失效及其它并发症。在现有的技术和医疗水平下,UHMWPE的使用还将持续一段相当长的时间,因此通过物理或化学的手段对UHMWPE进行各种改性,提高其表面硬度和耐磨损性能是解决人工关节无菌松动与远期失效的一种有效手段。本文对UHMWPE的表面改性正是为了提高其耐磨性能,达到延缓和减少UHMWPE磨屑之目的。本文对UHMWPE的表面改性,包含“低温等离子体活化/强化预处理”和“DLC薄膜沉积”的双重改性,低温等离子体处理和DLC薄膜沉积均采用微波ECR等离子体技术。全文首先研究了微波ECR等离子体处理对UHMWPE表面成分与结构、表面形貌、表面能、表面力学性能及表面摩擦学性能的影响;然后通过正交实验详细研究了微波ECR等离子过程参数对沉积DLC结构的影响;在此基础上最后通过ECR-PECVD方法在UHMWPE表面沉积DLC薄膜,并对DLC的结构、力学性能及摩擦学性能进行了研究。为了降低DLC与UHMWPE基体间弹性模量的不匹配程度以及UHMWPE在等离子成膜时的电荷累积效应,本文还研究了金属过渡层(Ti)对沉积DLC结构和性能的影响。全文主要结果如下:(1)经等离子体处理,UHMWPE表面生成了含氧基团和反式乙烯基基团,同时UHMWPE的表面交联度和结晶度也都得到了提高。活性基团的引入改善了UHMWPE的表面能(润湿性能),特别是氧等离子体处理,对UHMWPE表面能的改善最为显著;而交联度和结晶度的变化则提高了UHMWPE的表面力学性能。经等离子体处理,UHMWPE表面硬度、抗塑性变形能力都不同程度得到提高,其中经O或N等离子体处理其表面综合力学性能提高最大(适宜的硬度和韧性等)。(2)经等离子体处理,UHMWPE表面形貌产生了明显变化。其中经O、H、Ar等离子体处理,UHMWPE表面粗糙度都增加,但差别不明显;经N等离子体处理UHMWPE其表面粗糙度略有降低。(3)经等离子体处理,UHMWPE的摩擦学性能产生明显变化。经等离子体处理后,UHMWPE的摩擦系数都有所增大,但其体积磨损率却不同程度的有所下降。特别是经N或O等离子体处理,UHMWPE磨损率最低。在等离子体的表面改性效果中,对UHMWPE磨损率影响最大的因素是UHMWPE的表面力学性能和表面能(润湿性)。UHMWPE的磨损率随着UHMWPE表面力学性能(硬度、抗形变能力)和表面能的增加而降低。(4)采用ECR-PECVD技术制备DLC薄膜时,不同过程参数对沉积DLC中sp3/sp2键比例影响的重要性次序为:微波功率>气体流量比>基底偏压>沉积室压强。其中sp3/sp2随着微波功率的增大而减少;随着C2H2/Ar中Ar分量的增大而增大;随着基底偏压的增加而略为增加;随着沉积室压强的增加而略为降低。ECR-PECVD技术中不同过程参数对沉积DLC中氢含量影响的重要性次序为:基底偏压>气体流量比>沉积室压强>微波功率。其中氢含量随微波功率增大而增大;随着真空室压强的增大而增大;随着C2H2/Ar中Ar分量的增大而增大;但是随着基底偏压的增加,DLC中氢含量逐渐减少。(5)利用ECR-PECVD技术在等离子体活化后的UHMWPE表面成功制备出一种含氢DLC薄膜。UHMWPE经等离子体活化提高了其表面能和表面粗糙度,增强了与DLC间的膜基结合强度。DLC薄膜的沉积,进一步提高了UHMWPE的表面硬度、表面抗擦伤能力和耐磨损能力。(6) UHMWPE表面金属过渡层的引入,提高了DLC薄膜的沉积速率和薄膜中sp3键的含量,进一步提高了UHMWPE的耐磨损性能概况起来,本文采用的“低温等离子体活化/强化预处理+DLC薄膜沉积”的双重表面改性技术对提高UHMWPE的耐磨性来说将起到双重保障作用。将该技术应用于UHMWPE人工关节臼的表面改性具有潜在的重要应用价值。
摘要第6-8页
Abstract第8-9页
第1章 绪论第13-31页
    1.1 课题背景与选题意义第13-15页
    1.2 文献综述第15-28页
        1.2.1 UHMWPE生物摩擦学改性研究进展第15-21页
        1.2.2 聚合物表面制备类金刚石薄膜研究进展第21-25页
        1.2.3 微波电子回旋共振等离子体技术及其应用第25-28页
    1.3 本文研究设想、研究内容和技术路线第28-31页
        1.3.1 本文研究设想第28-29页
        1.3.2 本文研究内容第29-30页
        1.3.3 技术路线第30-31页
第2章 材料及试验方法第31-40页
    2.1 UHMWPE表面等离子体活化/强化预处理第31-32页
        2.1.1 试验材料第31页
        2.1.2 试验装置第31页
        2.1.3 工艺参数第31-32页
    2.2 UHMWPE表面类金刚石薄膜(DLC)的制备第32-35页
        2.2.1 试验材料第32-33页
        2.2.2 试验装置第33页
        2.2.3 工艺参数第33-35页
    2.3 表征方法和测试手段第35-40页
        2.3.1 水接触角与表面能第35-36页
        2.3.2 红外光谱(ATR-FTIR)分析第36页
        2.3.3 X射线光电子能谱(XPS)分析第36页
        2.3.4 拉曼(Raman)光谱分析第36页
        2.3.5 扫描电镜(SEM)形貌分析第36页
        2.3.6 激光共聚焦扫描显微镜(LSCM)形貌分析第36-37页
        2.3.7 硬度测量第37页
        2.3.8 膜基结合力测试第37-38页
        2.3.9 抗擦伤(划伤)能力测试第38页
        2.3.10 膜厚测试第38页
        2.3.11 耐磨性能测试第38-40页
第3章 等离子体表面改性超高分子量聚乙烯(UHMWPE)的结构与性能第40-72页
    3.1 引言第40页
    3.2 表面成分与结构第40-52页
        3.2.1 XPS分析第40-43页
        3.2.2 ART-FTIR分析第43-52页
    3.3 表面形貌第52-56页
        3.3.1 表面形貌分析方法第53-54页
        3.3.2 表面形貌分析结果第54-56页
    3.4 表面能第56-61页
        3.4.1 表面能的计算第57页
        3.4.2 实验结果第57-61页
    3.5 表面力学性能第61-71页
        3.5.1 显微压痕实验结果第62-65页
        3.5.2 纳米划痕实验结果第65-71页
    3.6 本章小结第71-72页
第4章 等离子体表面改性对UHMWPE摩擦学性能影响的研究第72-88页
    4.1 引言第72页
    4.2 试验方法第72-73页
    4.3 实验结果第73-80页
        4.3.1 摩擦系数第73-75页
        4.3.2 磨痕形貌第75-77页
        4.3.3 体积磨损率第77-80页
    4.4 分析与讨论第80-86页
        4.4.1 摩擦系数影响因素分析第80-83页
        4.4.2 体积磨损率的影响因素分析第83-86页
    4.6 本章小结第86-88页
第5章 ECR-PECVD过程参数对沉积DLC结构影响的研究第88-97页
    5.1 引言第88-89页
    5.2 拉曼光谱原理与DLC结构分析第89-90页
    5.3 实验结果与分析第90-96页
        5.3.1 ECR-PECVD过程参数对sp~3/sp~2比例的影响第91-95页
        5.3.2 ECR-PECVD过程参数对DLC中H含量的影响第95-96页
    5.4 本章小结第96-97页
第6章 UHMWPE表面DLC的制备及其耐磨性能研究第97-111页
    6.1 引言第97页
    6.2 实验部分第97-98页
    6.3 结果与讨论第98-110页
        6.3.1 沉积速率第98-99页
        6.3.3 化学成分和结构第99-101页
        6.3.4 力学性能第101-105页
        6.3.5 摩擦学性能第105-110页
    6.4 本章小结第110-111页
结论第111-112页
主要创新点第112-113页
问题与展望第113-114页
致谢第114-115页
参考文献第115-126页
攻读博士期间发表的论文及科研成果第126-127页
论文购买
论文编号ABS537171,这篇论文共127页
会员购买按0.30元/页下载,共需支付38.1
不是会员,注册会员
会员更优惠充值送钱
直接购买按0.5元/页下载,共需要支付63.5
只需这篇论文,无需注册!
直接网上支付,方便快捷!
相关论文

点击收藏 | 在线购卡 | 站内搜索 | 网站地图
版权所有 艾博士论文 Copyright(C) All Rights Reserved
版权申明:本文摘要目录由会员***投稿,艾博士论文编辑,如作者需要删除论文目录请通过QQ告知我们,承诺24小时内删除。
联系方式: QQ:277865656